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We present a theoretical study of the potential produced by an antenna immersed in a cold magnetized
plasma. This phenomenon is described in the literature as the ‘‘resonance cone’’ phenomenon. In this work, we
take into account electron collisions with other particles~neutral or charged!. We show that the domain—in
terms of frequencies—where the resonance cone exists is drastically reduced for a collisional plasma. Further-
more, the resonance cone peak is shifted by collisions, so that the usual formula used to compute the electronic
density is not quite exact. All the calculations are done with a finite magnetic field.@S1063-651X~96!50508-8#

PACS number~s!: 52.35.Hr, 52.20.Fs, 52.70.2m, 52.25.Mq

The resonance cone phenomenon~on the upper hybrid
branch! has been extensively studied during the past thirty
years, and especially since the first experiment of Fisher and
Gould, who showed it could be used to measure the elec-
tronic density of a magnetized plasma@1–3#. Gonfalone used
this method as a plasma diagnostic, measuring the electronic
density and the electronic temperature@4#. Neglecting colli-
sions, the electronic density is known by measuring only the
resonance cone angle. The electronic temperature is mea-
sured using the interference structure which appears around
the resonance cone, via the measurement of the angle be-
tween two successive maxima of the structure. This structure
has been explained as a consequence of the thermal effects
@3#. These studies are making reference to what is called the
‘‘cold cone,’’ that is to say without thermal effects: actually
thermal effects shift very lightly the resonance cone peak. In
other respects, a cold plasma could be highly collisional with
respect to the other typical plasma frequencies~e.g., mag-
netic field B550 G, electron densityne51011 cm23, elec-
tronic temperatureTe50.1 eV: electron-ion collision fre-
quencynei'0.1vce , plasma electronic pulsationvpe'20vce
with vce the electronic cyclotronic pulsation; in addition, we
must take into account the electron collisions on neutral par-
ticles!. The influence of collisional effects on the cold cone
has not been studied so far, to our knowledge. In this work,
we use a simple analytical collisional model to study the
influence of electron collisions on the resonance cone.

A typical experimental setup is described in Fig. 1: an
antenna immersed in a cold magnetized plasma emits a
wave. The magnetic field is uniform and externally pro-
duced.

The signal, received by another antenna moving around
the first one, could be considerably enhanced on the reso-
nance cone, when it exists. If we do not take into account the
thermal velocity in the dispersion relation and if we neglect
collisions of electrons with other particles, the equation of
the resonance cone isz21r2~K i/K'!50 wherez is the coor-
dinate along the magnetic field andr the polar coordinate,
with K' andK i the diagonal terms of the reduced dielectric
tensor:K'512@v pe

2 /(v22v ce
2 !# andK i512~v pe

2 /v2!, with
v the frequency of the wave.

The equationz21r2~K i/K'!50 leads to the usual for-
mula, used to determine the electron density, knowing the
magnetic field and the wave frequency:

sin2k5
v2~vpe

2 1vce
2 2v2!

vpe
2 vce

2 ), ~1!

wherek is the cone angle~Fig. 1! @1–4#.
Therefore the condition of existence of the resonance

cone isK i K',0, which gives

v,min~vce ,vpe! ~ lower branch!

max~vce ,vpe!,v,vUH ~upper hybrid branch!,

where vUH is the upper hybrid frequency:vUH

5Avpe
2 1vce

2 . When we take into account electron collisions
with ions or with neutral particles, these conditions are no
longer valid. We need to recalculate the potential with the
collision frequencyn.

Near the emitting antenna~r!2pc/v, wherer is the dis-
tance from the antenna! and near the resonance cone peak~at
resonance the wave numberk→`! the electrostatic potential
can be computed using the quasistatic equation:¹W •DW 5rext,
with DW the electric induction andrext the charge density cre-
ated by the emitting antenna as an electric oscillating point at
frequency v, localized at the origin, and given by@3#
rext5qe exp~2ivt)d(rW!, with qe the elementary electric
charge,i the complex number~0,1!, t the time,d the Dirac
function, andrW the position vector~Fig. 1!.

FIG. 1. Principle of the experiment.
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For an anisotropic medium, the relationship between the
electric induction and the electric fieldEW is DW 5«0K% •EW ,
where«0K% is the dielectric tensor, with:

K% 5S 1% 1 i
se%

v«0
D , ~2!

wherese% is the conductivity tensor. The tensorK% can be
written as

K% 5F K' 2 iK3 0

iK3 K' 0

0 0 K i

G , ~3!

for a finite magnetic field. The diagonal terms, taking into
account electron collisions with the other particles~ions and
neutral particles! via the electron collision frequencyn, are
@5#

K'512
vpe
2 ~v1 in!

v@~v1 in!22vce
2 #

, K i512
vpe
2

v~v1 in!
,

neglecting ionic terms. The electron collision frequencyn
represents losses for the wave, propagating in the plasma. By
its presence, the dielectric tensor becomes complex. Then, as
part of the quasistatic approximation, sinceEW 52¹W •w~rW,t!,
we have

¹W •„KW •¹W •w~rW,t !…52
qe
«0

exp~2 ivt !d~rW !. ~4!

Taking the Fourier transform of this equation, we obtain

ŵ~kW ,t !5
qe
«0

exp~2 ivt !

~2p!3/2
1

~k'
2K'1ki

2K i!
, ~5!

where ki5kW•eW z and k'5kW•eW x/cosc5kW•eWy/sinc with kW the
wave vector andŵ the Fourier transform of the potential.
Figure 2 describes the axis coordinates of the integration
domain.

Taking cylindrical coordinates for the wave vector
d3k[k'dk'dkidc, we obtain by inverse Fourier transform

w~rW,t !5
qe
«0

exp~2 ivt !

K'~2p!3
1

2E E E
~` !

exp~ ikW•rW !k'dk'dkidc

k'
21ki

2 K i

K'

,

~6!

where the integration domain~`! is defined as

~` !5$~k' ,ki ,c!PR3 with k'PR1;kiPR;cP@2p,p#%.
~7!

Then the first integration, alongc, gives, taking cylindrical
space coordinates~r,z!

w~r,z,t !5
qe
«0

exp~2 ivt !

K'~2p!2

3
1

4E2`

1`H E2`

1` k'H0
~1!~k'uru!dk'

k'
21ki

2 K i

K'

J
3exp~ ik iz!dki ~8!

FIG. 2. Axis coordinates of the integration domain.

FIG. 3. Integration path.~a! First case: two half contributions of
two poles;~b! second case: one pole contribution;~c! third case:
one pole contribution, the one with the positive real part.
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whereH0
~1! represents the Bessel function of the third kind

~or Hankel function! of zeroth order. This calculation has
been made by Kuehl@6,7#. For the two following integra-
tions, we present a new calculation, taking into account elec-
tron collisions. Respecting the Jordan lemma@8#, the integral

I~ki ,r!5E
2`

1` k'H0
~1!~k'uru!dk'

k'
21ki

2 K i

K'

~9!

converges. For the second integration, depending onK i/K' ,
we have three different cases depending on the integration
path.

~a! Im@~2K i/K'!1/2#50 ~half contributions of two poles
k2 and k1!: the case of collisionless plasma, when a reso-
nance cone exists, that is to say whenK i/K',0 @cf. Fig.
3~a!#. The calculation of the integralI~ki ,r! gives
2pN0~k1uru!, whereN0 represents the Bessel function of the
second kind~or Neumann function!, of zeroth order and with
k15ukiu~2K i/K'!1/2 andk252k1 .

The third integration gives@9#

w~r,z,t !5
qe

8p«0

exp~2 ivt !

K'

1

S z21r2
K i

K'
D 1/2. ~10!

~b! Im@~2K i/K'!1/2#.0 and Re@~2K i/K'!1/2#50 ~one
pole k0!: the case of collisionless plasma, nonexistence of a
resonance cone, that is to say whenK i/K'.0 @cf. Fig. 3~b!#.
The calculation of the integralI~ki ,r! gives ipH0

~1!~k0uru!,
with k05 i ukiu~K i/K')

1/2. Then the third integration gives
the same result as in~a! @see Eq.~10#.

~c! Im@~2K i/K'!1/2#.0 and Re@~2K i/K'!1/2#Þ0 ~one
pole k65k2 or k1 depending on which pole has a positive
imaginary part!: the case of collisional plasma, that is to say
when nÞ0 @cf. Fig. 3~c!#. The calculation of the integral
I~ki ,r! gives ipH0

~1!~k6uru!, with k656ukiu~K i/K'!1/2. Then
the third integration gives the same result as in~a! and ~b!
@see Eq.~10!#.

So in every case, we find at last thesame resultfor the
potentialw~r,z,t! @see Eq.~10!#.

Thus, the potential modulus is

uw~r,z,t !u5
uqeu
8p«0

1

uK'u
1

@~z21r2an!21~r2bn!2#1/4
,

~11!

where we putan5Re~K i/K'!, bn5Im~K i/K'!. The potential
is maximum on what is called the resonance cone defined by
the equationz21r2an50, if it exists.

The resonance coneexistsonly if an is negative. Taking
a5v/vce , b5vpe/vce , andg5n/vce , this condition can be
written asan~a,b,g!,0, with

an~a,b,g!5@a81a6~22b213g222!

1a4~b413g424b2g213b211!

1a2~g612b4g222b2g42b412g4

2b2g22b21g2!1b4g2~g211!#/

~a41g412a2g222a212g211!. ~12!

Figure 4 shows theg dependence of the domains—in terms
of ~v,vpe ,vce ,n!—where the resonance cone exists. We see
that this domain is reduced bycollisions: the losses due to
electron collisions with the other particles are too important
to permit the building of the resonance cone. The upper hy-
brid branch disappears forg.0.2209 . . . ; thelower branch
for g.0.4474 . . . .

For a collisional plasma~the collision frequencyn is non-
zero!, K i andK' are complex numbersa priori. The poten-
tial maximum is obtained for

r

z
5A 21

an1~bn
2/an!

,

with an,0, and is written

FIG. 4. Domains where the resonance cone
exists: b5vpe/vceversus a5v/vce , depending
on g5n/vce .
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wmax~z,t !5
qe

8p«0

exp~2 ivt !

K'uzu S an
21bn

2

bn
2 D 1/4. ~13!

The potential maximum is finite, except for the origin~z50!.
For a collisionless plasma~n50!, the potential maximum

is obtained forr/z5A21/a0 with a0,0, and the potential
diverges on the resonance cone.

The resonance cone peak is shifted by collisions as we
can see in Fig. 5: the cone anglek decreases when the col-
lision frequency increases. Therefore, the formula~1!, used
to determine the electronic densityne , is no longer exact
because the cone anglek depends on the collision frequency.
The only thing we can do is to detect the existence of the
resonance cone on the upper hybrid branch, and then, in the

typical case wherevpe@vce , to approximate the plasma
electronic pulsationvpe with the antenna pulsationv, and
then to compute the electronic density.

In conclusion, the frequency domain—in terms of
~v,vpe ,vce ,n!—where the resonance cone exists could be
drastically reduced for a collisional plasma and disappears
for ‘‘high’’ collision frequency. Collisions reduce the reso-
nance cone peak level and widen the resonance peak. Fur-
thermore, because of collisions, the resonance cone peak is
shifted, so that formula~1!, frequently used to determine the
electronic density, is no longer usable. These phenomena are
particularly important for cold and weakly magnetized plas-
mas, such as ionospheric plasmas.
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FIG. 5. The resonance cone anglek ~in degrees!
versusb5vpe/vce , depending ong5n/vce , with
a5v/vce51.5 ~upper hybrid branch!.
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